digital image processing is the use of computer algorithms to perform image processing on digital images. As a subcategory or field of digital signal processing, digital image processing has many advantages over analog image processing. It allows a much wider range of algorithms to be applied to the input data and can avoid problems such as the build-up of noise and signal distortion during processing. Since images are defined over two dimensions (perhaps more) digital image processing may be modeled in the form of Multidimensional Systems.
The signals are usually processed in a digital representation, so speech processing can be regarded as a special case of digital signal processing, applied to speech signal.
It is also closely tied to natural language processing (NLP), as its input can come from / output can go to NLP applications. E.g. text-to-speech synthesis may use a syntactic parser on its input text and speech recognition's output may be used by e.g. information extraction techniques.
Speech processing can be divided into the following categories:
§ Speech coding, a specialized form of data compression, is important in the telecommunication area.
§ Voice analysis for medical purposes, such as analysis of vocal loading and dysfunction of the vocal cords.
§ Speech synthesis: the artificial synthesis of speech, which usually means computer-generated speech.
§ Speech enhancement: enhancing the intelligibility and/or perceptual quality of a speech signal, like audio noise reduction for audio signals.
Radar is an object-detection system that uses electromagnetic waves—specifically radio waves—to identify the range, altitude, direction, or speed of both moving and fixed objects such as aircraft, ships, spacecraft, guided missiles, motor vehicles, weather formations, and terrain. The radar dish, or antenna, transmits pulses of radio waves or microwaves which bounce off any object in their path. The object returns a tiny part of the wave's energy to a dish or antenna which is usually located at the same site as the transmitter.
The term RADAR was coined in 1940 by the U.S. Navy as an acronym for RAdio Detection And Ranging.[1][2] The term radar has since entered the English and other languages as the common noun, radar, losing all of the capitalization. In the United Kingdom, this technology was initially called RDF (Range and Direction Finding), using the same acronym as the one for Radio Direction Finding to conceal its ranging capability.
Sonar (originally an acronym for SOund Navigation And Ranging) is a technique that uses sound propagation (usually underwater, as in Submarine navigation) to navigate, communicate with or detect other vessels. Two types of technology share the name "sonar": passive sonar is essentially listening for the sound made by vessels; active sonar is emitting pulses of sounds and listening for echoes. Sonar may be used as a means ofacoustic location and of measurement of the echo characteristics of "targets" in the water. Acoustic location in air was used before the introduction of radar. Sonar may also be used in air for robot navigation, and SODAR(an upward looking in-air sonar) is used for atmospheric investigations. The term sonar is also used for the equipment used to generate and receive the sound. The acoustic frequencies used in sonar systems vary from very low (infrasonic) to extremely high (ultrasonic). The study of underwater sound is known as underwater acoustics or hydroacoustics.
edical imaging is the technique and process used to create images of the human body (or parts and function thereof) for clinical purposes (medical procedures seeking to reveal, diagnose or examine disease) or medical science (including the study of normal anatomy and physiology). Although imaging of removed organs and tissues can be performed for medical reasons, such procedures are not usually referred to as medical imaging, but rather are a part of pathology.
As a discipline and in its widest sense, it is part of biological imaging and incorporates radiology (in the wider sense), nuclear medicine, investigative radiological sciences, endoscopy, (medical)thermography, medical photography and microscopy (e.g. for human pathological investigations).
Measurement and recording techniques which are not primarily designed to produce images, such as electroencephalography (EEG), magnetoencephalography (MEG), Electrocardiography (EKG) and others, but which produce data susceptible to be represented as maps (i.e. containing positional information), can be seen as forms of medical imaging.
edical imaging is the technique and process used to create images of the human body (or parts and function thereof) for clinical purposes (medical procedures seeking to reveal, diagnose or examine disease) or medical science (including the study of normal anatomy and physiology). Although imaging of removed organs and tissues can be performed for medical reasons, such procedures are not usually referred to as medical imaging, but rather are a part of pathology.
As a discipline and in its widest sense, it is part of biological imaging and incorporates radiology (in the wider sense), nuclear medicine, investigative radiological sciences, endoscopy, (medical)thermography, medical photography and microscopy (e.g. for human pathological investigations).
Measurement and recording techniques which are not primarily designed to produce images, such as electroencephalography (EEG), magnetoencephalography (MEG), Electrocardiography (EKG) and others, but which produce data susceptible to be represented as maps (i.e. containing positional information), can be seen as forms of medical imaging.
The modern uses of radar are highly diverse, including air traffic control, radar astronomy, air-defense systems, antimissile systems; nautical radars to locate landmarks and other ships; aircraft anticollision systems; ocean-surveillance systems, outer-space surveillance and rendezvous systems; meteorologicalprecipitation monitoring; altimetery and flight-control systems; guided-missile target-locating systems; and ground-penetrating radar geological observations.
Other systems similar to radar have been used in other parts of the electromagnetic spectrum, such as "lidar", which uses visible light from lasers, rather than radio waves.
No comments:
Post a Comment